Existe una herramienta que se llama « pata de cabra» , un dispositivo mecánico elemental ¡pero maravilloso! Sin su ayuda hacen falta muchos brazos para levantar un bloque de piedra grande. Pero basta colocar el pie de cabra debajo del bloque y apoyarlo en un saliente (una roca más pequeña, por ejemplo) para que pueda moverlo fácilmente una sola persona.
Los pies de cabra, espeques y dispositivos parecidos son tipos de palancas.Cualquier objeto relativamente largo y rígido, un palo, un listón o una barra, sirve de palanca. Es un dispositivo tan sencillo que lo debió de usar y a el hombre prehistórico. Pero ni él ni los sapientísimos filósofos griegos sabían cómo funcionaba. El gran Aristóteles, que fue discípulo de Platón, observó que los dos
extremos de la palanca, al empujar hacia arriba y abajo respectivamente,describían una circunferencia en el aire. Aristóteles concluyó que la palanca poseía propiedades maravillosas, pues la forma del círculo era tenida por perfecta.
Arquímedes había experimentado con palancas y sabía que la explicación de Aristóteles era incorrecta. En uno de los experimentos había equilibrado una larga palanca apoyada sobre un fulcro. Si colocaba peso en un solo brazo de la barra, ese extremo bajaba. Poniendo peso a ambos lados del punto de apoyo se podía volver a equilibrar. Cuando los pesos eran iguales, ocupaban en el equilibrio
posiciones distintas de las ocupadas cuando eran desiguales.
Arquímedes comprobó que las palancas se comportaban con gran regularidad.¿Por qué no utilizar las matemáticas para explicar ese comportamiento regular?
De acuerdo con los principios de la deducción matemática tendría que empezar por un axioma, es decir, por algún enunciado incuestionable.El axioma que utilizó descansaba en el principal resultado de sus experimentos con palancas. Decía así: Pesos iguales a distancias iguales del punto de apoyo equilibran la palanca. Pesos iguales a distancias desiguales del punto de apoyo hacen que el lado que soporta el peso más distante descienda.
Arquímedes aplicó luego el método de deducción matemática para obtener conclusiones basadas en este axioma y descubrió que los factores más importantes en el funcionamiento de cualquier palanca son la magnitud de lospesos o fuerzas que actúan sobre ella y sus distancias al punto de apoyo.
Supongamos que una palanca está equilibrada por pesos desiguales a ambos lados del punto de apoyo. Según los hallazgos de Arquímedes, estos pesosdesiguales han de hallarse a distancias diferentes del fulcro. La distancia del pesomenor ha de ser más grande para compensar su menor fuerza. Así, un peso dediez kilos a veinte centímetros del apoy o equilibra cien kilos colocados a dos
centímetros. La pesa de diez kilos es diez veces más ligera, por lo cual su distancia es diez veces mayor.
Eso explica por qué un solo hombre puede levantar un bloque inmenso de piedra con una palanca. Al colocar el punto de apoyo muy cerca de la mole consigue que su exigua fuerza, aplicada lejos de aquel, equilibre el enorme peso del bloque, que actúa muy cerca del fulcro. Arquímedes se dio cuenta de que aplicando la fuerza de un hombre a gran distancia del punto de apoyo podían levantarse pesos descomunales, y a él se le atribuye la frase: « Dadme un punto de apoyo y moveré el mundo» .
Pero no hacía falta que le dieran nada, porque su trabajo sobre la palanca ya había conmovido el mundo. Arquímedes fue el primero en aplicar la matemática griega a la ingeniería. De un solo golpe había inaugurado la matemática aplicada y fundado la ciencia de la mecánica, encendiendo así la mecha de una revolución científica.
Comentarios
Publicar un comentario